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ABSTRACT 

5 by an 

-.Lerobee 130 sounding rocket t o  an a l t i t ude  of 143 km during the 

November 1-96? Leonid meteor shower. 

modules containing sampling surfaces were in s t a l l ed  on the instrument 

p r io r  t o  launch. 

- 
Cleaned and preevacuated sealed 

The instrument opened, on ascent, a t  64 km and 

closed, on descent, a t  116 km, exposing one square meter of sampling 

surface ve r t i ca l ly  and another square meter horizontally f o r  200 seconds. 

The instrument was  parachuted t o  ear th  a f t e r  severance from the rocket. 

Vacuum sealed modules containing the samples were removed from the 

instrument and taken t o  the clean-room laboratory f o r  analysis.  An 

extensive contamination control program w a s  u t i l i zed  t o  exclude t e r -  

restrial mater ia l  from the f l i g h t  instrument and sampling surfaces. 

Electron microprobe analyses of pa r t i c l e s  found by opt ica l  micros- 

of f l i g h t  sampling surfaces indicate t h a t  only three -2 2 copy on 1.4~10 M 

may have had an e x t r a t e r r e s t r i a l  origin.  

f i c i a l  ea r th  satellite and earlier sounding rocket data indicate  that  

Predictions based on arti- 

more than 50 e x t r a t e r r e s t r i a l  pa r t i c l e s  should have been observed on 
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t h i s  area. 

prelimimry survey. The significance of t h i s  cannot be f u l l y  realized 

u n t i l  the  en t i r e  exposed area has been examined. 

These predictions haxe not been substantiated by t h i s  

INTRODUCTION 

The Leonid meteor shower which recurs annually i n  November i s  

a t t r ibu ted  t o  the comet Tempel-Tuttle (18661) whose orb i t  coincides 

with tha t  of the meteor stream [Porter, 19631 

periods of great intensi ty  every 33 or 34 years since i t s  e a r l i e s t  

recorded occurrence i n  902 A. D. [Watson, 19621. 

influx rate of pa r t i c l e s  i n  the Leonid shower of 1965 or 1966 w a s  

predicted on the basis  of t h i s  cyclic behavior of the stream. 

ination of radar observations [ Sky and Telescope, 1963aI [McIntosh, 

19661 and visual counts [Sky and Telescope, 1962, 196353, 1964, 1965, 

19661 of the Lsonids fo r  the past  f e w  years confirms this  prediction 

(see Figure 1). 

L i t t l e  i s  known. concerning the composition of Leonid meteor par- 

t i c l e s ,  except for  t h a t  learned from spectra of the ablation observed 

as the high speed pa r t i c l e s  enter the ear th ' s  atmosphere. 

obtained on these meteors [Millman and McKinley, 1963][~ao  and Lokanadham, 

1963a, 1963bI indicate a stony type of pa r t i c l e  having the major e le-  

ments, C a ,  Mg, Fe, Si,  0, and Na. 

The shower has exhibited 

An increase i n  the 

An exam- 

Spectra 

In  order t o  learn more about the physical and chemical character- 

i s t i c s  of the dust pa r t i c l e s  i n  t h i s  meteor stream and about the comet 

from which they come, a physical collection of the pa r t i c l e s  w a s  attempted 



using a recoverable sounding rocket. The Luster micrometeoroid sarrrp- 

l i ng  instrument w a s  launched (and successfully recovered) November 16, 

1965 a t  1600 (U. T.) within a few hours of the estimated peak of the  

shower [Sky and Telescope, 19661 

PREDICTED PARTICLE COLLECTION 

The Leonid meteor stream w a s  detected by Berg i n  1955 [Berg and 

Meredith, 19561 using an Aerobee rocket equipped with a device t o  detect 

the inpact f l a sh  of high speed pa r t i c l e s  s t r iking a detector. 

influx r a t e  he recorded w a s  not confirmed by l a t e r  rocket f l i g h t s  by 

Lovering [ 19591 o r  by Berg i n  1960 [ k b i n  e t  al., 19631. 

The high 

The a r t i f i c i a l  

ear th  s a t e l l i t e ,  Vanguard 111, detected t h i s  meteor stream i n  November 

1959 with a microphone detector e 

major increase i n  impact r a t e  during the November 15-18 period from 

Alexander e t  a l .  [1961] reported a 

t h i s  s a t e l l i t e .  An approximate influx rate from t h e i r  data [Alexander 

e t  al., 19621 has been used t o  predict  the numbers of pa r t i c l e s  larger  

than cer ta in  s i z e s  which might be intercepted by the Luster sampling 

surfaces during t h e i r  exposure. Table 1 shows t h i s  estimate for the 

k o n i d  shower peak r a t e .  

TABIX 1.- PREDICTED EX'IBATERRESTRIAL PARTICLE COLEZCTION 

Number greater than indicated size 
per square meter f o r  a 200-see f l i g h t  Data source 

11-1 41-1 81-1 
Vanguard I11 s a t e l l i t e ,  Nov. 

Venus Flytrap rocket , 
1959, Leonid shower peak 

June 1961 

no data 4,000 100 

180, ooo 24,000 6,000 

20,000 200 10 Sa te l l i t e s ,  rockets, and visual 
sightings - annual average 
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Hemenway and Soberman [1962] launched and recovered the  Venus 

They detected a Flytrap micrometeoroid col lector  on June 6, 1961. 

high inf lux r a t e  which they believe may have been due t o  sampling a 

daytime meteor shower e Recently, using more sophisticated methods 

[Soberman and Hemenway, 19651, they have recalculated the  f l u x  encoun- 

t e r ed  by t h i s  f l i g h t .  These l a t e r  data have been used t o  estimate the  

approximate number of p a r t i c l e s  which might be collected by the  Luster 

f l i g h t  if  the  Ieonid shower i s  similar.  

Table 1 as the  Venus Flytrap collection. 

This estimate i s  shown i n  

Dubin [1963] has summarized presently known par t ic le - f lux  values 

obtained from many sources. This average inf lux  r a t e  has been used 

t o  estimate the  magnitude of the  Luster col lect ion during nonshower 

periods. 

accumulated from s a t e l l i t e  detectors,  rocket collections,  and visual  

sightings. If these various f l u x  data are reasonably re la ted  t o  the  

v isua l  and radar observations of the  Ieonid shower maxima (see 

Figure l), then the inf lux r a t e  at  the time of the  Luster f l i g h t  i n  

1965 should have been s igni f icant ly  larger  than has been predicted i n  

Table 1 from the  Vanguard I11 data which were obtained i n  1959. 

It i s  shown i n  Table 1 as the annual average f o r  a l l  data 

EXPERIMENTAL MFEHOD 

The Luster payload consis ts  of the sampling instrument, an 

electronics  package, and a recovery package. 

has a sealed enclosure which rises, exposing the  arms when the  pro- 

grammed a l t i t u d e  i s  reached. 

The sampling instrument 

The three ?-foot a r m s  are hinged a t  the 
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base of t he  instrument and are deployed perpendicular t o  the  ax i s  of 

the  payload with the four module pans on each a r m  facing upward along 

the  f l i g h t  path. 

t i c a l  direction. 

t u r e  and expose another square meter of a rea  horizontally.  

reentering the atmosphere the  a r m s  a re  re t racted,  mating the pans w i t h  

covers, and the enclosure i s  closed, resealing the instrument f romthe  

outside environment. A prototype sampling instrument i s  shown during 

the open cycle i n  Figure 2. 

the  Aerobee 150 sounding rocket. Time versus a l t i t u d e  data a re  shown 

i n  Figure 3 f o r  the  November 1-96? Luster f l i g h t  e 

These pans expose a square meter of area i n  the ver- 

The mating covers remain f ixed t o  the  cen t r a l  struc- 

Pr ior  t o  

The launch vehicle for t h i s  payload w a s  

The basic  sampling surface used i n  the  f l i g h t  was a t h i n  methyl 

All s l ides  were marked with 2.5-mm methacrylate s l i de  5.1 X 5*7 cm. 

ruled squares. 

f ies subsequent relocation of pa r t i c l e s  for further analysis.  

This permits orderly scanning of the s l ides  and simpli- 

Some of the  basic s l i des  were shadow coated i n  vacuum w i t h  alumi- 

num or copper fi lms t o  a id  the ident i f ica t ion  of contaminants and 

enhance the detection of impact c ra te rs .  Others were overlaid w i t h  

t h i n  fi lms of polyvinyl chloride (PVC), heavily p las t ic ized  t o  provide 

tacky surfaces so that  the pa r t i c l e s  retained on these and untreated 

p l a s t i c  and metal surfaces could be compared. 

squares and quartz p l a t e s  were a l so  attached t o  some s l ides .  

Highly polished capper 

These 

p l a t e s  were t o  be inserted d i r ec t ly  i n  the  electron microprobe where 

p a r t i c l e s  on them could be analyzed without separate handling. 

several  reagent fi lms for detecting i ron  i n  pa r t i c l e s  and f o r  indicating 

Also, 
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soluble hal ides  [Farlow, 19571 w e r e  included. 

representing a l l  slide types w e r e  sealed i n  modules which were processed 

Numerous control  slides 

i n  an ident ica l  fashion t o  f l i g h t  modules but were not flown. 

control  slides which had electron microscope screens attached were flown 

A f e w  

with half the  s l i de  and screens shielded from di rec t  p a r t i c l e  impact by 

p l a s t i c  cover s l i p s  t o  a id  i n  the comparison of f l i g h t  collected par- 

t i c l e s  w i t h  possible contaminants. 

The s l ides  were attached d i rec t ly  t o  the  module pans and covers. 

Half the  area on each module cover w a s  coated w i t h  a t h i n  f i lm of PVC. 

This can be eas i ly  stripped from the cover and dissolved and f i l t e r e d  

through membrane f i l t e r s  t o  concentrate pa r t i c l e s  from a large collec- 

t i o n  area onto a small area t o  a id  the opt ica l  search. 

A primary requirement imposed on the Luster experime’nt w a s  t h a t  

Sampling surfaces were of cleanliness [Blanchard and Farlow, 19661. 

prepared i n  an environment having no pa r t i c l e s  larger  than O.5p 

per 0.03M3 of air  (Fed. Std. 209, Class 100). 

w a s  maintained throughout t h e i r  transportation, f l i g h t ,  recovery, and 

analysis.  To accomplish t h i s ,  the vacuum sealed module concept w a s  

imposed. 

the Ames clean laboratory and ins ta l led  as sealed un i t s  on the instru- 

ment i n  a similar environment p r io r  t o  f l i gh t .  

Contamination control  

Module pans and covers were assembled and vacuum sealed i n  

They were opened only 

during sampling and l a t e r  f o r  analysis.  

ment i n t o  the  atmosphere, the modules were vacuum resealed as the outside 

atmospheric pressure rose and remained sealed u n t i l  opened f o r  analysis.  

During reentry of the  instru-  

Similar contamination controls using c l a s s  100 clean rooms were applied 



during the  assembly, t e s t ,  and integrat ion of t he  f l i g h t  instrument. 

Thus, the  sampling surfaces, modules, and i n t e r i o r  of the  sampling 

instrument were never exposed t o  uncontrolled earth environments 

during the experiment. 

Guest s c i e n t i s t s  par t ic ipated extensively i n  the  Luster experi- 

ment. Five s c i e n t i s t s  representing England, France, Israel, Sweden, 

and West Germany u t i l i z e d  one European module. Seven United States  

guests u t i l i z e d  three separate modules, and shared p a r t  of one Ames 

module. Thus, 4 of the 12 modules were loaded and vacuum sealed i n  

guest s c i en t i s t s '  laborator ies  and delivered t o  Ames Research Center 

sealed i n  precleaned nylon bags. 

opened at  sampling a l t i t ude ,  then were vacuum resealed on reentry t o  

the atmosphere. They were repackaged i n  nylon bags upon recovery and 

returned t o  guests'  laborator ies  s t i l l  vacuum sealed. I n  t h i s  manner 

the r e su l t s  were obtained by each sc i en t i s t  as independently as possible. 

Results of guest experiments w i l l  be published independently of the 

NASA findings. 

These modules remained sealed u n t i l  

REsms 

Six f l i g h t  s l i des  (1.4n0-2i'8), representing l e s s  than 2 per cent 

of the  t o t a l  area,  and one non-flight control slide have been examined. 

Both f l i g h t  and backup slides were opt ical ly  scanned at a magnification 

of 120 times. This i s  suf f ic ien t  t o  detect  pa r t i c l e s  as small as 21-1 i n  

diameter without d i f f icu l ty .  

photomicrographed fo r  t h i s  preliminary study. Pa r t i c l e s  i n  t h i s  s i z e  

However, only those 41-1 and la rger  were 
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range which could not be recognized as common contaminants were 

removed and qua l i ta t ive ly  examined i n  the  electron microprobe X-ray 

analyzer. The t h i n  copper and aluminum coatings on cer ta in  p l a s t i c  

s l i des  were searched a l so  f o r  holes of these s i z e s ,  which might have 

been caused by p a r t i c l e s  impacting at  high speed. 

s l i des  with a t o t a l  area of about 70 cm2 have been scanned, but  none 

of these holes have been detected. 

Three of these 

Thin f i lms of PVC were stripped from the  covers of two f l i g h t  

and three  non-flight modules. These were separately dissolved and 

f i l t e r e d  through membrane f i l ters .  The f i l t e r s  were scanned opt ica l ly  

i n  the same fashion as the p l a s t i c  s l ides .  Only unusual p a r t i c l e s  

were chosen from these f o r  study i n  th i s  i n i t i a l  survey because of the  

numerous contaminants present 

Pa r t i c l e s  selected f o r  microprobe analysis  were t ransferred t o  

small quartz squares. 

e lectron beam fo r  elements of atomic number 12 (magnesium) and larger .  

Only major elements were detected i n  t h i s  qual i ta t ive examination. 

Forty-four p a r t i c l e s  were examined w i t h  the electron microprobe. 

these,  25 were from f l igh t  slides, 5 from the PVC fi lms on f l i g h t  

module covers, and the r e s t  from non-flight control surfaces. Only 

two p a r t i c l e s  from f l i g h t  slides and one from a f l i g h t  module PVC f i lm  

can be considered as candidates f o r  an e x t r a t e r r e s t r i a l  origin.  

Each p a r t i c l e  w a s  examined w i t h  a f ine ly  focused 

Of 

Even 

i n  these three cases, considerable skepticism e x i s t s  concerning an 

e x t r a t e r r e s t r i a l  origin.  However, f i n a l  evaluation awaits more exten- 

sive examination of these pa r t i c l e s  and those from several  hundred 

addi t ional  f l i g h t  slides. 
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Par t i c l e  or igin i s  based on several  c r i t e r i a .  If a p a r t i c l e  

contains large amounts of chemical elements which a re  very rare i n  

cosmic abundance [Cameron, 19591 or i n  meteorites [Mason, 19621, it is 

l i k e l y  t o  be a contaminant. However, i f  detailed s tudies  indicate  none 

of these p a r t i c l e s  occur on the  control surfaces, and if  no contaminant 

source can be found i n  the  payload, then an e x t r a t e r r e s t r i a l  o r ig in  may 

be suspected. If nearly iden t i ca l  p a r t i c l e s  having s imilar  physical  

and chemical charac te r i s t ics  are found on bo-hh f l i g h t  and non-flight 

slides, then e x t r a t e r r e s t r i a l  o r ig in  i s  considered unlikely.  

t i c l e s  on slides which were preshadowed w i t h  metal have shadows 

associated with them, or contain small amounts of that  metal (they may 

have been dislodged from t h e i r  o r ig ina l  locat ion during f l i g h t ) ,  then 

they a re  suspected contaminants. 

of reasonable cosmic abundance and i s  not duplicated by contaminants 

on non-flight col lect ing surfaces, then it may be considered as a can- 

didate fo r  an e x t r a t e r r e s t r i a l  origin.  

If par- 

If a p a r t i c l e  contains only elements 

Figure 4 shows photomicrographs of several  p a r t i c l e  types which 

i l l u s t r a t e  these methods. 

f l i g h t  sampling surfaces are shown. 

found i n  f l i g h t  modules; p a r t i c l e s  ( f )  through ( j )  i n  non-flight 

Similar p a r t i c l e s  from both f l i g h t  and non- 

Pa r t i c l e s  (a) through (e)  were 

modules. Their t en ta t ive  elemental composition and their  approximate 

s ize  i s  noted near each pa r t i c l e .  Spheres and larger  p a r t i c l e s  tended 

t o  be found more cornmonly on the tacky PVC films on the  module covers. 

The significance of t h i s  has not yet  been evaluated. Pa r t i c l e  (a )  and 

i t s  non-flight counterpart ( f )  a r e  very similar i n  sphericity,  metall ic 



10 

l u s t e r ,  and surface character is t ics .  Iron is  the pr inc ipa l  element 

of each. 

c a l l y  and physically similar. 

slides are ident ica l  t o  non-flight contaminants ( i )  and (j). 

because of close s imi la r i ty  t o  known contaminants, these pa r t i c l e s  

cannot be assigned an extraterrestrial or igin.  

contaminating sphere similar i n  appearance t o  the i ron  spheres, but 

contains no iron. 

found. Pa r t i c l e  ( e )  i s  one of t h e  three which are extraterrestrial 

candidates, since no counterpart has been found on a non-flight 

sampl ing  surface. 

Pa r t i c l e  (e) and the  similar non-flight (g) are a l s o  chemi- 

Par t ic les  (a) and (e) from f l i g h t  

Thus, 

Pa r t i c l e  (h) i s  a 

Sources of these contaminants have not yet  been 

DISCUSSION 

Although less than 2 per cent of the exposed sampling area has 

been surveyed, two observations may be formulated. F i r s t ,  judgment 

of the or igin of a collected pa r t i c l e  cannot be r e l i ab ly  made based 

on morphology alone. Close opt ica l  examination of pa r t i c l e s  found 

i n  f l i g h t  modules, such as are shown i n  Figure 4, may eas i ly  mislead 

the  observer i n t o  premature assignment of a cosmic origin.  This i s  

l i k e l y  when the p a r t i c l e  has a ' c lass ica l '  shape often attributed t o  

presumed extraterrestrial material, such as smooth edges or  a spheri- 

c a l  form apparently due t o  melting. 

may be eliminated prematurely because i t s  physical form i s  similar t o  

debris found on non-flight controls. Thus, additional chemical and 

mineralogical data are required before the or igin of a candidate can 

be assigned. 

Likewise, a good cosmic candidate 
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Second, predictions of e x t r a t e r r e s t r i a l  p a r t i c l e  col lect ions 

based on the  Vanguard I11 and Venus Flytrap experiments (Table 1) 

have not been substantiated by this  preliminary survey. Predictions 

indicated that 50 or more e x t r a t e r r e s t r i a l  p a r t i c l e s  of s i z e s  la rger  

than 4p should have been collected.  Optical and electron microprobe 

analyses of pa r t i c l e s  found on these slides have eliminated a l l  but 

a f&w as e x t r a t e r r e s t r i a l  candidates. 

the  col lect ion of e x t r a t e r r e s t r i a l  material  by the  Luster f l i g h t  may 

be s igni f icant ly  less than expectations based on ear th  s a t e l l i t e  and 

other sounding rocket measurements. 

If t h i s  present t rend continues, 
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